Course Name (code if available): Developmental Biology

Point of Contact person: Dr. Kasturi Mitra with Dr. Vijay Raghavan and Dr. Hiroshi Hamada

Overview: The field of developmental biology aims to understand how an organism develops from a single cell to fully matured. Interplay of various gene products (proteins) guide key cellular processes to allow the appropriate developmental task to happen at the right time and place. Errors in developmental processes lead to serious disorders and diseases. The course will take a multidisciplinary approach and will aim to cater to students beyond biology department with the goal of training minds to contribute in tackling major outstanding tasks in the broad field of fundamental developmental biology.

Learning Outcomes: This course will have both basic and advanced contents. The main learning outcome will be to understand all the genetic and cellular process in key

Prerequisites: None. For students who have not taken the core Biology courses, extra reading materials will be provided.

Week	Broad topics to be covered	Details (subtopics)
Week 1	Refresher of the basic Biological concepts	Summary of topics covered in Bio-2 and Bio-3 courses
Week 2	Overview of development	Molecular and cellular processes involved in development
Week 3	Use of model systems and basic techniques	Advantages and disadvantages of various developmental model systems
Week 4	Embryology and germ layer development	Events happening post fertilization upto formation of the three germ layers. Both basic and advanced concepts will be covered.
Week 5	Pattern formation	Involvement of morphogen gradients, lateral inhibition etc. Developmental timing will be covered. Basic and advanced concepts
Week 6	Development of symmetry and asymmetry	Basic and advanced concepts will be covered.
Week 7	Stem cells and regeneration	Properties of embryonic, adult and neoplastic stem cells. Principles of regeneration and application in applied fields. Basic and

Course Contents:

		advanced concepts will be covered.
Week 8a	Cellular reprogramming	Animal cloning and iPSC technology
Week 8b	Plant development	
Week 9	Integrating disciplines	Importance of physics, math and engineering
Week 10	Neural development	Basic and advanced concepts will be covered.
Week 11	Developmental disorders of brain and behavior	Basic and advanced concepts will be covered
Week 12	Paper presentations	Students will present

Requirements (Reading List and other materials):

1. Molecular Cell Biology. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A and Scott MP. 7th edition. New York: W. H. Freeman and Company.

2. Molecular Biology of the Cell, Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter Walter. 6th edition. New York: Garland Science.

3. Principle of Development, Lewis Wolpert, Cheryll Tickle and Alfonso Martinez Arias, 6th edition, Oxford University Press. This textbook explains principles of development (not too much detail), so may be suitable to undergraduate students.

4. Additional reading, including research papers and review articles, will be provided.